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Abstract—The elastic fields due to the simultaneous influence of body force, surface force, and the
continuous distribution of dislocations are derived. The derivation due to the last part is primarily based on
the geometry of dislocations distribution. The obtained results are extended to the elastic-piastic defor-
mation through the concept of dislocations movement. The resultant expressions show that the term
associated with the plastic distortional gradient — Cuy8%; and the term associated with the plastic strain
CuBln; are equivalent to the body force and the surface force respectively. This result agrees with Lin’s
“equivalent body force™ and “equivalent surface force™ obtained in phenomenological plasticity.

1. INTRODUCTION

The main purpose of this work is to derive the stress fields introduced by the continuous
distribution of dislocation, and by their movement. The obtained results will apply to both
elastic and plastic deformations of single crystals as well as polycrystalline aggregates. The
derivation is based on the dislocation geometry. Thus it takes into account the non-uniform
behavior of the distribution of dislocations, which occurs in the plastic deformation of metals.
Unlike most of the commonly used models in metal plasticity, such as Taylor’s constant strain
model {1}, Batdorf and Budiansky’s constant stress model[2], and the self-consistant models of
Kréner[3], Budiansky and Wu[4], and Hill[5], the present analysis will provide the exact
solution for the calculation of the elastic~plastic deformation of polycrystals. The expressions
derived here will also serve to verify Lin’s important results of “equivalent body force™ and
“equivalent surface force”[6-8] which were obtained exclusively from the fundamental equa-
tions of continuum plasticity.

In the study of the deformation of metals which is attributed to dislocations, the distribution
of dislocations has been considered both as “discrete” and as “continuous.” In the former
approach, the displacement field caused by a dislocation line in an isotropic medium was first
derived by Burgers[9]. Subsequently the stress field introduced by a dislocation line was also
obtained by Peach and Koehler{10]. Following this concept various deformation fields due to
dislocations with simple geometries, such as cylindrical dislocations, helical dislocations, etc.
were discussed by several other investigators[11]. This approach, though it has yielded some
interesting results, has been unable to provide significant contributions to continuum plasticity
due to its limitation of “discreteness.”

Since dislocations exist in crystals with very high density[12], it was found more useful to
discuss the deformation fields with the concept of continuous distribution of dislocations. This
concept was first applied by Peierls[13] to study the stress field due to an edge dislocation in a
periodic structure. But it was Nye[14] who presented this concept more systematically by
introducing the dislocation density tensor a; with

Bi=amn (n
where B; is the total Burgers vector of the dislocation lines passing through a unit ares with unit
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normal n;. With this definition Bilby([15] and Kréner[16] established the relationships between
a; and the elastic distortional tensor 87, and the plastic distortional tensor 8% respectively as

a;; = euPlix (2)
and
a;i = — gaPhix 3

where &, is the unit permutation tensor. In addition to this, Kroner{16] also introduced into the
dislocation theory the dislocation movement tensor Ny as

Mik = nt.'l/,'bk 4

with t; representing the displacement vector of the dislocation with line direction » and Burgers
vector by, and n the number of such dislocations. While there exist other sets of dislocations at
the point of consideration, the total N, is obtained by summing up the values of ntw;b, for all
sets.

A more systematic study of the deformation fields based on the concept of continuous
distribution of dislocations has been carried out by several authors. Among them Kroner[16]
elegantly developed a continuum theory of dislocations and internal stress. This theory has
greatly simplified the mathematical complexities in this field. Later Indembom{[17] extended
Kroner’s theory of internal stress to study the strain field caused by the continuous distribution
of dislocations and obtained for it an integral representation. Mura{18-21] has also greatly
contributed to this area in a number of his publications on the static and dynamic dislocations.
His analytical work on the periodic distribution of dislocations[19] practically covers all the
possible dislocation distributions, since an arbitrary distribution function can always be
expanded with sine-cosine terms by means of Fourier series or integrals. In addition Kroupa’s
concept of the dislocation loop density([22] has even more realistically taken the dislocation
geometry into consideration. Publications [16-22] have indeed brought the study of this subject
to a new: era.

The present investigation could be considered as an extension of the previously cited
papers. In order to place the dislocation field in a proper perspective in metal plasticity, the
deformation of the solid is here assumed to be under the simuitaneous influences of body force,
surface force, and the continuous distribution of dislocations. In the first part the elastic
deformation will be considered, under which the dislocations remain stationary. In the second
part the obtained results will be extended to the condition of elastic-plastic deformation
through the concept of dislocations movement.

2. ELASTIC DEFORMATION

When dislocations exist in the crystals, they cause internal distortions around their neigh-
borhoods. By neglecting the singularity at the dislocation cores and the nonlinearity introduced
by the disiocation curvatures, these internal distortions can be generally considered to obey the
theory of linear elasticity. This assumption will be adopted here. To derive the displacement
and stress fields in the continuum under the body force f;, the boundary surface force F; and
the continuous distribution of dislocations, the following elastic constitutive relation and
equation of equilibrium are of importance:

oy = Cigaliy, (5)
o +fi=0 (6)

and the boundary condition
on=F, onB @)

where oy, Cu, i, n; are the stress tensor, elastic constants, displacement vector and unit
normal vector to the surface boundary B and ; means the partial differential with respect to the
x;-axis (whereas ; refers to x-axis). It was also found more convenient to employ Green's
tensor function Gy(x, — x.), which represents the displacement «; at a point x,, arising from a
unit point force at x,, in the x;-direction in a uniform material. It’s defining equation, according
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to Seeger{23], is
CiiGimyj + 8imd(r) =0 ®)

where 8,, is the Kronecker's delta, and &(r) is the three-dimensional Dirac’s delta function.

The displacement field due to a dislocation line in terms of Green’s tensor function is given
in [11,18]. In order to facilitate our later study, we will briefly derive it here again. We start our
derivation from the identity:

Cipaiti (X 2)G imyp(Xn = Xp) = C i s (X )G im i Xn — X 2) 9

where the symmetric property, Cys = Cuy of the elastic constants was employed. This identity
is integrated over the volume V with respect to x, as

L Cipatti(x2)G im i xn — x2) dv' = f,, Cipattr (X )G im (%0 — x2) dV'.
Using eqn (8) it becomes
I Ui(X)Eimd(xy = x ) dv' = — I Cintti (X 3)Gim i Xn — x3) d0’
or v v
Um(Xp)=— f” Cintti (X )G im X — X ) dv'.
Applying the divergence theorem,
Um(Xy) = fv CipabtirG im dv' —J: CiatltpGin p ds'i

which in turn ieads to
Um(Xy) = "f Cwllu']'G,'m dv'+ ID Cwuu'Gi.. ds;

-I CMG;..J' ds}.
Equations (5) and (6) and the boundary condition on B lead the above expression to

b () = f Gim(Xn = XDfi(x2) dv’ + j G0 — X2)Fi(x3) ds’
v B (10)
- ] CntGimpkn — Xt A},

The last term in eqn (10) represents the displacement field caused by the presence of the
displacement discontinuity over the surface s. This displacement discontinuity, under the
presence of a dislocation, is identified as the Burgers vector by, and the surface s is the glide
plane of the dislocation. Consequently eqn (10) becomes

() = f Gim (X — X0)fi(x}) dv" + f Ginl(Xn = X0 Fi(x3) ds’
v B (”)
- f CiptG im0 = X2)by d).

The elastic distortion 85, defined by B, = Un.» is then given as

Bow = f Gimn (%o = X0)fix1) dv' + f Ginn(n — X)Fi(x3) s’
v B (12)
+ f C;NGMJ,(x, - X,'.)bk dS;

Equation (12) gives the elastic distortion field due to the simultaneous influences of body force
f:, surface force F, and a dislocation line with its Burgers vector b, and glide surface s.
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With the field eqns (11) and (12) established for a single dislocation line, we will proceed to
extend it to the condition of continuous distribution of dislocations. In this process the theory
of linear elasticity will be applied. Denote the last term in eqn (12) as ux

Iom = f CiitGim,jn (X — x2)by dsi.

After some mathematical manipulations (see Appendix 1) this surface integral is transformed to
a line integral as

Im = § s,.,-,C,ng,,.,g(x,, - x,’,)b; dx,’, (13)

where ¢ is the dislocation line. The linear theory of elasticity implies that, while there exists
more than one dislocation, the elastic distortion field caused by these dislocations could be
obtained by the linear superposition of the distortion fields introduced by these dislocations
individually. Under the condition of several dislocations eqn (13) could thus be modified to

W M @ @ (n}y (m)
Tm=$  enpConGomilta = xDIbid%,+ bidx,+ -+ b X, (14)
Ci€r. .- Cy

(k)
where b; is the Burgers vector of the kth dislocation whose segment at point x, is denoted by

(k)
dx,, and ¢; is the kth dislocation line.
To express eqn (14) in terms of the established terminology of the continuous distribution of
dislocations, consider an element AA with a unit normal n; (see Fig. 1). Assume that there are n

dislocations passing through this element. The Burgers vector and line direction of the kth
® 0}
dislocations are denoted by b; and » respectively. The total Burgers vector B, due to all the

dislocations enclosed by a Burgers circuit which lies on the surface AA and forms a unit area, is
h @ (m)
Bi=bi+b+---+ b

where m is the total number of dislocations passing through this unit area. To express a; in

(k)
terms of b,, this relation is rewritten as
[£3113]

Z, b; n
B;= z Vi(ki) (15)
"l cos 8

{k} k)
where @ is the angle between n; and the kth dislocation line d x; (Fig. 2). A comparison of eqns
(1) and (15) shows that

k)k)
L

ay= %~ (16)

'cos 8

¢4 3]
v, K

Fig. 1. Dislocations passing through the area element AA.
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n;

(@ dx,
. ‘
0] dXI (#) (n) d/
dx; 8 dx;
aA

Fig. 2. Dislocation segments inside the volume element dV.

Reconsider eqn (14). The dislocation segments d(x,) are related to the thickness d/ of a small
volume element dv as shown in Fig. 2. This volume element is made up by the base dA in Fig. 1
and d/ in the n;-direction. The thickness d/ is taken to be thin enough so that all dislocations
passing through AA will emerge also on the top. The segment of the kth dislocation inside this

volume is related to d/ as
(k)
(k) Y

dx; =—;dl
cos @

With this relationship, the quantities inside the bracket of eqn (14) can be rewritten as

(k)(k)
m m @ @ (u) (n) L yp i

idx,+ b dx, “+ b dxp = ;: (;)
cos

Since AA is not necessary to be a unit area, upon which ay in eqn (16) was defined, the above
quantity can be expressed in terms of the dislocation density tensor as a,AA di, or as a,; dv.
L. in eqn (14) then becomes

Im= f mip CiptGms (i — Xty s, a”n

According to eqn (12) the elastic distortion 83, due to the simuitaneous influences of the
body force f;, the boundary surface force F; and the continuous distribution of dislocations a,,;
is then given by

Bim= [ Gunali = x5 40"+ [ Gunn(ra ~ 5D 05
+ L EnipCistGima(Xa — Xn)ap; dv'. (18)
The correspondent stress field is given through the constitutive relation (5) as
0= | ClnsGmata = 5065 80"+ [ el = 50 (x1) 85

+ f Enu CimnCrai Gt (e — X1)tpr(x2) d0. (19

it should be pointed out here that a similar expression to the last term of eqn (18) was also
found by Indenbom[17) who started from Krdner’s concept of -internal stress, as well as by
DeWit[28]. It is hoped that the present derivation based on the consideration of dislocations
geometry would give a clearer picture of the physical meaning of this quantity. On the other
hand, Mura[18, 20] also obtained an identical expression for this term. The applicability of his
result, however, is inherently limited to the geometrical patterns of paralle] dislocations due to
his assumption ay dD = nb; dl, dX. In this assumption, the volume element dD, according to
Mura, is formed by the dislocation line segment vector d, and an area base d= normal to di,.
Since the volume element dD is unique only when all dislocations exist in parsilel, the
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applicability of his result is thus so limited. As dislocations exist in crystals with random
orientations, a derivation applicable to arbitrary dislocations distribution as shown here seems
more desirable.

In the next section results of eqns (i18) and (19) will be extended to the elastic-plastic
deformation through the concept of dislocations movement.

3, ELASTIC-PLASTIC DEFORMATION

When a solid is under the simultaneous influences of body force, surface force, and the
continuous distribution of dislocations, the stress field o throughout it is given by eqn (19).
According to Peach and Koehler{10] the “force” acting on the disiccation is given by
~ goubw; for a unit dislocation length. Since a dislocation in a crystal moves only on its glide
plane, its “effective”” acting force is the resolved component of the acting force on this plane.
Let this geometrically permissible movement direction be #. The effective acting force is then
given by — suoubwiti [24), which is here denoted by f..

The motion of a dislocation is governed by its effective acting force. Consider a dislocation
segment pinned at its two ends. The dislocation line tends to bulge out under the influence of an
applied force. The curvature of the bulged dislocation increases with increasing f, [25]. Though
the movement of dislocations in general contributes to plastic strain, the contribution due to
this “bulging out™ process is nevertheless physically insignificant. As the effective acting force
is increased to a critical value f,, dislocation movement apart from the bulging out process takes
place, and this marks the onset of plastic deformation. Most dislocations exist in crystals in
their stable configurations. Though there also exist some unstable dislocations with higher
potential energy, their number is relatively low and their contribution to the plastic strain is
again negligible. It thus could be concluded that before the f, value of the stable dislocations is
reached, no significant plastic strain is generated and the dislocations could be generally
assumed to remain stationary. When the effective acting force on the stable dislocations attains
the f, value, dislocations move and plastic strain is produced. The corresponding surface force
which provides the f. value is usually called the “yield point” of the considered material in
phenomenological plasticity. When the surface force is below the yield point, the deformation is
elastic. While it exceeds this point, the deformation becomes elastic-plastict.

In the foregoing section we considered elastic deformation under which dislocations remain
stationary. In this section the applied surface force is assumed to exceed the yield point; the
deformation is elastic-plastic and the dislocations undergo some movement.

Consider an element of a constituent single crystal of polycrystailine aggregate (or just of
a single crystal) with elastic-plastic deformation. After the dislocation movement, piastic
distortion is generated. The total distortion u;; of the element can be decomposed into the
elastic distortion B§ and the plastic distortion 8%, as

uij = Bj+ B (20)

At the end of dislocations movement, dislocations become stationary again. The elastic
distortion is again introduced by the body force f, the surface force F, and the dislocation
density tensor a;, which, under the present circumstance, is the density after the occurrence of
the dislocation movement. B;,, is again representable by eqn (I8). To express this represen-
tation in terms of plastic distortion 8%, Kréner's relation (3) is recalled

R P
a,; = epth thage

Substituting this relation in eqn (18), 85, becomes
Bim = [ Gumatta = 50fix) 80+ [ Gimalta = xDF (D) 0
v B

"‘j Enjoapt CijttGiom.i(Xn ~ X )B iy AV’ @n

+See {24} for a more detailed discussion on the yield criterion based on dislocation mechanics.
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The last integral of eqn (21), again denoted by I, can be further simplified as follows.
Lm= fv EnipE oot CiptCim ) (Xn = X )Bhg Ao’
= I (8neBin — Burbiq) CipsGirm 1B i AV’
= [ CuGnsBn 0’ - | CaGomsBiss d'
By the symmetry of Cyy = Cuy;,
o = [ CoGinsBiae 80"~ [ CpfGomBar '
The divergence theorem leads this expression to
lin =~ [ CuGinguBl 80+ [ CGinsBl s,
= [ CGunsBle dsi+ [ CoGineBls v
= [ oGt dv'~ [ CoGimsBlids)
+ f CpiGimpBh dsi- f CaGin Bl dsi
+ f ConGomyrB dv"
= [ CurGinslir 40’ [ CotGrnBl ds;
+ f CpsGom B’ ds:,-—«L BBz, — XS d'.

Part of the integrand of the third integral, according to Bilby[15], is equal to the surface
dislocation density tensor &,. at the grain boundaries as
G = ‘m(ﬁ':'im' ﬂ:km)"!
where n, is the unit normal from grain boundary 1 to boundary 2. I, is thus simplified to
lan == | CotGuma5a = x0Bley 40"+ | CoGimatrs = 0185 ]

- j CopeGom i 45" = Bom.

By using Cyu = Cuy in the third integrand of I.., the elastic distortion B, of eqn (21)
consequently becomes

B =f° Ginalfi = CuBlis) dv'
+ j GinalF, + CoaBlin)) ds @)

+ f Enp CpiGmpi A’ = Blm.
2
By virtue of the deformation decomposition (20), eqn (22) in turn gives the total deformation
gradient as

2 = [ Gunalfi~ Culir) 0
N ® (B)
+ f GimnlFi + CipaBlim] ds'+ ] €1 CostGomsli 5",
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Upon integration, the total displacement is given by
U =f Gimlf, — C juBfe;] dv’
+ [ GunlFi+ a1 ds 24)

+ f s,,,C,—,qu,,.d,,.- ds’.
s

The stress field inside the continuum under this combined elastic-plastic deformation can be
determined according to the Hooke’s law and eqn (22) as

ay = j' CimnGrmnlfy = CroaBlis] v’
¥ f CiraGrmalF, + CroBins] s’ 25)

+J- e,.,,,C,-,,..,.C,,qu,,.ﬁ,,r dsl - Ci,‘mnB flnv

Equations (22)~(25) give the general expressions of the total displacement field, the elastic
distortion field and the stress field under the simultaneous influences the body force, the surface
force, the surface dislocations at the grain boundaries, and the dislocations movement in the
grains which is characterized by the plastic distortional tensor.

When a polycrystal deforms plastically, the deformation fields, due to the dislocations
pile-ups against the grain boundaries, are heterogeneous over the entire aggregate. Since the
thickness of the grain boundary is only of a few atomic distance, in practical calculation it could
be regarded as a wall of zero thickness across which crystal orientation changes from one to
another. The heterogeneity of the plastic distortion field indicates that the volume integrals in
the foregoing equations should be carried out throughout the entire crystalline aggregate. The
fact that crystal orientation changes across the grain boundaries implies that the plastic
distortion field is discontinuous over these boundaries. The surface integrals thus have to be
carried out over all the grain boundaries. Since there is no surface force applied on the internal
grain boundaries, the surface integral corresponding to the surface force exist only on the
external ones.

Owing to the nature of their derivation, these equations satisfy both the requirements of
equilibrium and compatibility over the grain boundaries. Unlike most theories in metal plasticity
mentioned earlier, this system of equations provides an exact solution.

Equations (22)-(25) aiso show that in the influence of the plastic deformation fields the
quantity — C;uBf; is equivalent to body force f;, and the other quantity CyBfin; is equivalent
to surface force F. These results make it meaningful to call these two terms ‘“‘equivalent body
force” and “equivalent surface force” respectively, as originally proposed by Lin[6]. The
deformation fields introduced by these two quantities can be calculated according to the theory
of linear elasticity by visualizing them as body force and surface force respectively. For an
infinitely isotropic material, the elastic constants Cyy are given by Cyu = A8ydy + u(8y + 88j),
and the Green's tensor function is given by Kelvin's solution of unit point force[26]. This
substitution reduces the foregoing equations to what Lin employed in his studies on physical
plasticity {6-8].

4, CONCLUSION

In this paper the deformation fields under the simultaneous influences of the body force, the
surface force and the continuous distribution of dislocations were derived. The derivation
attributed to the last factor was based on the consideration of dislocations geometry. The
obtained expressions were then extended to the elastic-plastic deformation through the concept
of dislocations movement. These results are applicable to arbitrarily distributed dislocations.
The final integral representations of the deformation fields show that the terms —CyB%; and
CiuB in; are equivalent to body force and surface force respectively. These equivalences are in
accordance with Lin’s results obtained in phenomenological plasticity.
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Since the integral representations of the deformation fields were directly derived from the
consideration of dislocations distribution, they are naturally applicable to the inhomogeneous
distribution, such as the dislocation pile-ups against the grain boundaries. Both the non-uniform
behavior of dislocation pile-ups and the heterogeneity of plastic distortion inside each grain are
automatically considered. The conditions of equilibrium and compatibility across the grain
boundaries are both satisfied, and the solution is exact.

These equations have paved the way for further study in metal plasticity by means of
continuous distribution of dislocations. The elastic distortional energy attributed to the
continuous dislocations, for instance, is readily obtainable from eqns (18) and (19). The stress
field due to “discrete” dislocations with some simple distribution patterns could also be
calculated from egn (19) by properly defining the corresponding dislocation density tensor. In
another study[27] these expressions have served to construct the subsequent yield surfaces of a
f.c.c. polycrystalline aggregate.
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APPENDIX 1
Denote
Lam ‘I CattGim in(Xa = X2)by. ds}.

The definition of Green's tensor function gives
CitGimj = — Sin8(%0 = X2)
and the property of the delta function yields to*

[ sduin - sasi=o
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where the considered field point x, in the continuum does not lie on the slip surface s. These two relations together give
- J: CotGim i xn = x)b; dsa = 0.
The quantity I,. can therefore be written as
Lim =J: CorDi(Gimiw ds)— Gimrj dsy)
where the symmetric property of C,y; Was once again used. This quantity can then be represented by
lan = [ b BurbonSenboGinsr 45,
or in other words
Lom =— L Ciitbi€q vy € wyp Gimar 45 g
This expression now can be transferred to a line integral through Stoke's theorem, which implies that
i T, dx)= f eqry Ty ds)
The resuitant form after this application is

I,.,. = f 6.,C,meJ(X, - X,‘.)b) dX;



