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AIIIa'Id-The elastic fields due to the simultaneous inftuence of body force, surface force, and the
continuous distribution of dislocations are derived. The derivation due to the last part is primarily baed on
the pometry of dislocations distribution. The obtained results are extended to the elastic-tllubc defor
mation tbrouah the concept of dislocations movement. The resullant expressions show that the term
associated with the plastic: distortioaalll'ldient - C"L and the term associated with the plastic strain
C.,ftll/ are equiv*nt to the body force and the surface force respecti¥ely. This result epees with Un's
"eqwv.nt body force" and "equivalent surface force" obtained in phenomenoloaical plasticity.

I. INTRODUCTION
The main purpose of this work is to derive the stress fields introduced by the continuous
distribution of dislocation, and by their movement. The obtained results will apply to both
elastic and plastic deformations of sinaie crystals as weD as polYCrystailine aareptes. The
derivation is based on the dislocation geometry. Thus it takes into account the non-uniform
behavior of the distribution of dislocations, which occan in the plastic deformation of metals.
Unlike most of the commonly used models in metal plasticity, such as Taylor's constant strain
model[l], Batdorf and Budiansky's constant stress model[2), and the self-consistant models of
Kraner[3], Budiansky and Wu[4], and HDJ[S), the present analysis will provide the exact
solution for the calculation of the elastie-pJastic deformation of polycrystals. The expressions
derived here wnt also serve to verify Lin's important results of "equivalent body force" and
"equivalent surface force"[6-8] which were obtained exclusively from the fundamental equa
tions of continuum plasticity.

In the study of the deformation of metals which is attributed to dislocations, the distribution
of dislocations bas been considered both as "discrete" and as "continuous," In the former
approach, the displacement field caused by a dislocation line in an isotropic medium was first
derived by Bwprs[9). Subsequently the stress field introduced by a dislocation line was also
obtained by Peach and Koebler[10]. FoUowing this concept various deformation fields due to
dislocations with simple geometries, such as cylindrical dislocations, helical dislocations, etc.
were discussed by several other investiptors[ll]. This approach, though it bas yielded some
interesting results, has been unable to provide significant contributions to continuum plasticity
due to its limitation of "discreteness,"

Since dislocations exist in crystals with very high density[12], it was found more useful to
discuss the deformation fields with the concept of continuous distribution of dislocations. This
concept was first applied by PeierJs[l3] to study the stress field due to an edge dislocation in a
periodic structure. But it was Nye[l4] who presented this concept more systematically by
introducing the dislocation density tensor all with

(1)

where B; is the total Burgers vector of the dislocation lines passing throuab a unit area with unit
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normal nj' With this definition Bilby(I5] and Kroner[16] established the relationships between
a/j and the elastic distortional tensor {3ij, and the plastic distortional tensor {3~ respectively as

(2)

and

(3)

where 6ii/< is the unit permutation tensor. In addition to this, Kroner[16] also introduced into the
dislocation theory the dislocation 'movement tensor Nijle as

(4)

with ti representing the displacement vector of the dislocation with line direction IIj and Burgers
vector bt;, and II the number of such dislocations. While there exist otber sets of dislocations at
the point of consideration, the total Nlit is obtained by summing up the values of IItilljble for all
sets.

A more systematic study oj the deformation fields based on tbe concept of continuous
distribution of dislocations bas been carried out by several authors. Among them Kroner[16]
elepndy developed a continuum theory of dislocations and internal stress. This tbeory bas
greatly simplified the mathematical complexities in this field. Later Indembom [17] extended
Kroner's theory of internal stress to study the strain field caused by the continuous distribution
of dislocations and obtained for it an integral representation. Mura{l8-2l] bas also greatly
contributed to this area in a number of his publications on the static and dynamic dislocations.
His analytical work on the periodic distribution of dislocations{l9] practically covers all the
possible dislocation distributions, since an arbitrary distribution function can always be
expaaded with~ terms by means of Fourier series or intearaJs. In addition Kroupa's
concept of the dislocation loop density [22] bas even more realistically taken the dislocation
&eOmetry in&o consideration. Publications [16-22] have indeed brouaht the study of this subject
to a new era.

The present investiption could be considered as an extension of the previoU$ly cited
papers. In order to place the dislocation field in a proper perspective in metal plasticity, the
deformation of the solid is bore assumed to be under the simultaneous intluences of body force.
surface force, and the continuous distribution of dislocations. In the first part the elastic
deformation will be considered, under which the dislocations remain stationary. In the second
part the obtained results will be extended to the condition of elastic-plastic deformation
throuab the concept of dislocations movement.

2. ELASTIC DEFORMATION

When dislocations exist in the crystals, they cause internal distortions around their neigh
borhoods. By neglecting the singularity at the dislocation cores and the nonlinearity introduced
by the dislocation curvatures, these internal distortions can be generally considered to obey the
theory of linear elasticity. This assumption wiD be adopted here. To derive the displacement
and stress fields in the continuum under the body force Ii> the boundary surface force F/ and
the continuous distribution of dislocations, the following elastic constitutive relation and
equation of equilibrium are of importance:

and the boundary condition

tTlJ =Ci/ldUk.1

tTIJ.J +Ii = 0

tT/jIIj = F; on B

(5)

(6)

(7)

where tTij, Ci/ld' Ut, IIJ are the stress tensor. elastic constants, displacement vector and unit
normal vector to the surface boundary B and .J means the partial diferential with respect to the
x;-axis (whereas .j' refers to Xi-axis). It was also found more convenient to employ Green's
tensor function GiJ(xm - x';'>, which represents the displacement Ui at a point Xm arising from a
unit point force at x';' in the x;-direction in a uniform material. It's defining equation, according
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to ~ger[23], is

Cj~boIJi + 8...8(r) =0 (8)

where 8... is the Kronecker's delta, and 8(r) is the three-dimensional Dirac's delta function.
The displacement field due to a dislocation line in terms of Green's tensor function is given

in [11,18]. In order to facilitate our later study, we will briefly derive it here again. We start our
derivation from the identity:

(9)

where the symmetric property, Cjj/d =C"'ji of the elastic constants was employed. This identity
is integrated over the volume V with respect to x~ as

LCij/dUI(X~)Gbo,"/..(X" - x~) dv' =LCIj/dUlt(X~)G iIII.,',eX" - x~) dv'.

Using eqn (8) it becomes

Lul(x~)8lm8(x" - x~) dv' = - LCij/dUlt(X~)GiIII."J{X" - x~) dv'

or

U",(x,,) =-LCij/dUlt(x~)GimJ'J{x" - x~) dv'.

Applying the diveraence theorem,

U",(x,.) =LC""tftliIItJ'dv'- f. CijWUtG....,.ds;

which in tum leads to

U",(x,,) =- I. Cij/dUltJ'/'G... dv'+ I8 Cij/dUUG"" dsj

-f. CIjWUtG""J' ds;.

Equations (5) and (6) and the boundary condition on B lead the above expression to

u",(x,,) =LG...(x" - x~f,(x~) dv' + I8 G...(x" - x~)Fi(x~) ds'

-f. Cjj/dG...J{x" - x~)Ult ds;.

(10)

(11)

The last term in eqn (10) represents the displacement field caused by the presence of the
displacement discontinuity over the surface s. This displacement discontinuity, under the
presence of a dislocation, is identified as the Burgers vector bitt and the surface s is the glide
plane of the dislocation. Consequently eqn (10) becomes

u",(x,,) =I. Gj",(x" - x~)f,(x~) dv' + IB G...(x" - x~)Fj(x~) ds'

-1. Cj~ ImJ{X" - x~)blt ds;.

(12)

+1. Cj/ldGIm,/ll(x" - x~)blt ds;.

Equation (12) gives the elastic distortion field due to the simultaneous influences of body force
fi' surface force F,. and a dislocation line with its Burgers vector bit and glide surface s.

The elastic distortion Il~"" defined by Il~ ="",... is then given as

Il:"" =LGj",...(x" - x~)f,(x~) dv' + IB Gim."(x,, - x~)l·i(x~) ds'
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With the field eqns (11) and (12) established for a single dislocation line, we will proceed to
extend it to the condition of continuous distribution of dislocations. In this process the theory
of linear elasticity will be applied. Denote the last term in eqn (12) as lnm

After some mathematical manipulations (see Appendix 1) this surface integral is transformed to
a line integral as

(13)

where c is the dislocation line. The linear theory of elasticity implies that, while there exists
more than one dislocation, the elastic distortion field caused by these dislocations could be
obtained by the linear superposition of the distortion fields introduced by these dislocations
individually. Under the condition of several dislocations eqn (13) could thus be modified to

(14)

(t)

where bl is the Burgers vector of the kth dislocation whose segment at point x~ is denoted by

(t)

dx,.. and Ct is the kth dislocation line.
To express eqn (14) in terms of the established terminology of the continuous distribution of

dislocations. consider an element 4.A with a unit normal ni (see Fig. t). Assume that there are n
dislocations passing through this element. The Burgers vector and line direction of the kth

(t) (t)

dislocations are denoted by bl and Vi respectively. The total Burgers vector B;, due to all the
dislOCatIons enclosed by a Burgers circuit which lies on the surface AA and forms a unit area, is

(I) (2) (m)

Bi = bl + bi +... + bi

where m is the total number of dislocations passing through this unit area. To express aJi in
(t)

terms of bh this relation is rewritten as
(tj(t)

B
= ~ biJ'Jnj

i t:., (t)

-I cos 8
(IS)

(t) tt)

where' is the angle between nl and the kth dislooation line dXI (Fig. 2). A comparison of eqns
(1) and (1S) shows that

(16)

Fig. 1. Dislocaholll passing through the area element 6A.
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dI

Fig. 2. Dislocation segments inside the volume element dV.

(II)

Reconsider eqn (14). The dislocation segments dxp are related to the thickness dl of a small
volume element dv as shown in Fig. 2. This volume element is made up by the base dA in rig. 1
and dl in the ",-direction. The thickness dl is taken to be thin enough so that all dislocations
passing through aA will emerge also on the top. The segment of the kth dislocation inside this
volume is related to dl as

(t)

(t) P;
dx;=~d/.

cos (J

With this relationship, the quantities inside the bracket of eqn (14) can be rewritten as

(t)(.4<)
(I) (I) (2) (2) (II) (II) II Pp b;
bidxp+ b;dxp+'" + bi dx" =~ ~dl.

~cos 8

Since aA is not necessary to be a unit area, upon which tllJ in eqn (16) was definecl, the above
quantity can be expressed in terms of the dislocation density tensor as tlpiaA d/, or as tlpi dv.
I"", in eqn (14) then becomes

(17)

According to eqn (12) the elastic distortion JJ:"" due to the simultaneous influences of the
body force lit the boundary surface force Fi, and the continuous distribution of dislocations tip;

is then given by

13:"" =I. Gim.II(XII - x:Jj,(x~) dv' + fB Gim,n(x" - x:JFi(x~) ds'

+ I. £lIjpC~/cmJ(x" -x:Jtlp; dv".

The correspondent stress field is given through the constitutive relation (S) as

(flj =I. C/joIIIG"","(xl -x:JI,(x:Jdv'+ fB C-a""",(x" -x;JF,(x;Jds'

+ I. £~C'JmnC"ttlbnJ(Xn -x~)ap,(x:Jdv'.

(18)

(19)

It should be pointed out here that a similar expression to the last term of eqn (18) was also
found by Indenbom[l7] who started from Kr6ner's concept of·iDtemaI stress, as weD as by
DeWit(28). It is hoped that the present derivation based on the consideration of dislocations
geometry would give a clearer picture of the physical meaniita ef this quantity. On the other
hand, Mura[l8,20) also obtained an identical expression for this term. 'Ibe applicability of his
result, however, is inherently limited to the geometrical patterns of parallel disloc:atioas due to
his assumption tllIl dD =nb; dl" elI. In this assumption, the volume element dD, accordina to
Mura, is formed by the dislocation line segment vector d/".and an area base elI normal to dill.
Since the volume element dD is unique only when all dislocations exist in puaIlel, the
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applicability of his result is thus so limited. As dislocations exist in crystals with random
orientations, a derivation applicable to arbitrary dislocations distribution as shown here seems
more desirable.

In the next section results of eqns (18) and (19) will be extended to the elastic-plastic
deformation through the concept of dislocations movement.

3. ELASTIC-PLASTIC DEFORMATION

When a solid is under the simultaneous influences of body force, surface force, and the
continuous distribution of dislocations, the strese; field (Tid throughout it is given by eqn (19).
According to Peach and Koebler[lO] the "force" acting on the dislocation is given by
- BlJlUtlb,l', for a unit dislocation length. Since a dislocation in a crystal moves only on its glide
plane. its "elective" acting force is the resolved component of the acting force OD this plane.
Let this aeometrically permissible movement direction be Ii. The effective acting force is then
given by - 6.,.,b,I',t, (24), which is here denoted by I,.

The motion of a dislocation is governed by its effective acting force. Consider a dislocation
segment pinned at its two ends. The dislocation line tends to bulge out under the influence of an
applied force. The curvature of the bulged dislocation increases with increasing I, [25]. Though
the movement of dislocations in general contributes to plastic strain, the contribution due to
this "bulging out" process is nevertheless physically insignificant. As the effective acting force
is increased to a critical value Ie> dislocation movement apart from the bulaina out process takes
place, and this marks the onset of plastic deformation. Most dislocations exist in crystals in
their stable configurations. Though there also exist some unstable dislocations with higher
potential enerlY, their number is relatively low and their contribution to the plastic strain is
again neaJigible. It thus could be concluded that before the Ie value of the stable dislocations is
reached, no significant plastic strain is generated and the dislocations could be generally
assumed to remain statio~. When the elective acting force on the stable dislocations attains
the Ie value, dislocations move and plastic strain is produced. The corresponding surface force
which provides the Ie value is usually called the "yield point" of the considered material in
phenomenoloaical plasticity. When the surface force is below the yield point, the deformation is
elastic. While it exceeds this point, the deformation becomes elastic-plastict.

In the foregoing section we considered elastic deformation under which dislocations remain
stationary. In this section the applied surface force is assumed to exceed the yield point; the
deformation is elastie-plastic and the dislocations undergo some movement.

Consider an element of a constituent single crystal of polycrystalline aggrepte (or just of
a single crystal) with elastic-plastic deformation. After the dislocation movement, plastic
distortion is lenerated. The total distortion UIJ of the element can be decomposed into the
elastic distortion l3ii and the plastic distortion 13f;, as

Ui.j = 13j, +13f;. (20)

At the end of dislocations movement, dislocations become stationary again. The elastic
distortion is again introduced by the body force Ij, the surface force ~, and the dislocation
density tensor ai/' which, under the present circumstance, is the density after the occurrence of
the dislocation movement. 13:", is again representable by eqn (18). To express this represen
tation in terms of plastic distortion 13~. Kroner's relation (3) is recalled

SUbstituting this relation in eqn (18), 13:", becomes

13';"" =LG/",."(x,, - x~)!I(x~) dv' + fB G;",."(x,, - x~)~(x~) ds'

+I. E..;p8qp,C/jJdGt",Ax" - x~)I3~.q' dv'.

tSee (241 for a more detailed discussion on the yield criterion based on dislocation mechanics.

(21)
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The last integral of eqn (21), again denoted by 1_ can be further simplified as follows.

I.", =Ls"tpB.,C,.,GIM,I(x,. - x:JJlfi,q' d,,'

= I(8~jI- 8.,8jq)C~b1J·llri,q· dv'

= LCqWlM,I·Pf"..,dv'-LC'~IM,I·Pfu.J,dv',

By the symmetry of CI/M =Ctui,

1_ ::i C.,GiMJ'llb· dv' - i C.,G..,JI~' dv'.

The divergence theorem leads this expression to

1_ =- i C,itP im,j,,,·lIft dl' +I. C,.,G...,lIft ds~

-I. C,.,Gim,j·II':.. ds~+i C,JJ...,,.JI':d d,,'

::LC""O ......Ilft.r dv';-LC,JJ....·"lrdsj

+I. C.,o"""IJr. ds~ - I. C.,o...,.IJ~ dst

+i C.,G I'I·IJf., dv'

== i C;"O ·IJ'*.r dv' - I. C""O.....·II1r dsj

+I. c.o-.rB,..",,/3':tds~-i U(x,-.rall~d,'.

Part of the intqraDd of the third iDtesraI, acconliDa to Bilby[lS], is equal to the surface
dislocation density tensor apt at the grain bounclarin as

Ii". == 8Pflf(JJ~1) -II~ ....
where nq is the unit normal from grain bouDCiary Ito boundary 2. I.. is tIIUI simpIiIed to

1_ == - i C.,G....(x. - x:JIJ'*.r dv' +I c.",G.....(x,. - x~)~, dsj

-I. C.GIaJ8,.apt ds' -II~·

By using C•• CIlUJ in the third integrand of 1_, the elastic distortion II~ of eqn (21)
consequently becomes

13:'" ==LGim.Il[f; - C"..Bl.rJ dv'

+I G/m,lI(F/ +C~ftnJ] ds (22)

+1,.c,.G.,pp; ds' -II:.....

By virtue of the deformation decomposition (20), eqn (22) in tum Jives dae total def..-don
gradient as

8.... _ f. G........[fl - CIlotl13L.} dv'
ix" Jo

+iG....,,[F/+ CIlotl13JlII/] ds',+i 8.C.,G~ ds'.
(23)
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Upon integration, the total displacement is given by

Urn =rGim[f, - c.;kll3fk.rl dv'

+i Girn[FI + Ci;kll3fkn;] ds'

+i BljpCi;~kmtipi ds'.

24)

(25)

The stress field inside the continuum under this combined elastic-plastic deformation can be
determined according to the Hooke's law and eqn (22) as

(Til =rCilrrutG"",Jl[f, - C...AJ3fk.• '] dv'

+1. Ci/rrutG"".II[F, + C...AJ3fkn.] ds'

+1. BrupCiIrrutCrsklGlurt.JCip, ds' - Cij~:rn'

Equations (22H2S) Jive the general expressions of the total displacement field, the elastic
distortion field and the stress field under the simultaneous inftuences the body force, the surface
force. the surface dislocations at the grain boundaries, and the dislocations movement in the
grains which is characterized by the plastic distortional tensor.

When a polycrystal deforms plastieally, the deformation fields, due to the dislocations
pile-ups apinst the grain boundaries, are heterogeneous over the entire aggregate. Since the
thickness of the grain boundary is only of a few atomic distance, in practical calculation it could
be reprded as a wall of zero thickness across which crystal orientation changes from one to
another. The beteropDeity of tbe plastic distortion field indkates that the volume integrals in
the foregoina equations should be carried out throughout the entire crystalline aggregate. The
fact that crystal orieDtlAion cbanaes across the grain boundaries implies that the plastic
distortion field is discontinuous over these boundaries. The surface integrals thus have to be
carried out over all the grain boundaries. Since there is no surface force applied on the internal
grain boundaries. the surface integral corresponding to the surface force exist only on the
external ones.

Owing to the nature of their derivation, these equations satisfy both the requirements of
equilibrium and compatibility over the grain boundaries. Unlike most theories in metal plasticity
mentioned earlier, this system of equations provides an exact solution.

Equations (22H2S) also show that in the inftuence of the plastic deformation fields the
quantity - C;J'.J is equivalent to body force fi' aDd the other quantity CiJkl!3fknj is equivalent
to surface force Fl. These results make it meaningful to call these two terms "equivalent body
force" and "equivalent surface force" respectively, as originally proposed by Lin [6]. The
deformation fields introduced by these two quantities can be calculated according to the theory
of linear elasticity by visualizing them as body force and surface force respectively. For an
infinitely isotropic material, the elastic constants Cijkl are given by Ciik/ =A8,,8k1 +1J.(811 + 8u8;k),
and the Green's tensor function is given by Kelvin's solution of unit point force [26]. This
substitution reduces the foregoing equations to what Lin employed in his studies on physical
plasticity[6-8].

4. CONCLUSION

In this paper the deformation fields under the simultaneous inftuences of the body force, the
surface force and the continuous distribution of dislocations were derived. The derivation
attributed to the last factor was based on the consideration of dislocations geometry. The
obtained expressions were then extended to the elastic-plastic deformation through the concept
of dislocations movement. These results are applicable to arbitrarily distributed dislocations.
The final intepal representa&ions of the deformation fields show that the terms -Cipa/lfk.t and
CiJfknj are equivalent to body force and surface force respectively. These equivalences are in
accordance with Lin's results obtained in phenomenological plasticity.
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Since the integral representations of the deformation fields were directly derived from the
consideration of dislocations distribution, they are naturally applicable to the inhomoseneous
distribution, such as the dislocation pile-ups against the grain boundaries. Both the non-uniform
behavior of dislocation pile-ups and the heterogeneity of plastic distortion inside each pain are
automatically considered. The conditions of equilibrium and compatibility across the grain
boundaries are both satisfied, and the solution is exact.

These equations have paved the way for further study in metal plasticity by means of
continuous distribution of dislocations. The elastic distortional energy attributed to the
continuous dislocations, for instance, is readily obtainable from eqns (18) and (19). The stress
field due to "discrete" dislocations with some simple distribution patterns could also be
calculated from eqn (19) by properly defining the corresponding dislocation density tensor. In
another study [27] these expressions have served to construct the subsequent yield surfaces of a
f.c.c. polycrystalline aggregate.
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APPENDIX 1

Denote

1- '"'iC..,Go..Jo(x,. - X~)bk dsl.

The definition of Green's tensor function pves

C..,GbaJi • - U(x" - x:J
and the property of the delta fuDCtion yields to'

i b,6..,1(x" -x~)dl~ '"' 0
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where tile considered field point x. in the continuum does not lie on the slip surface s. These two relations together give

-i C.//</Ot...r;{x. - X~)bf ds~ =o.

The quantity I... can therefore be written as

I... =i C,..,MOtm.,·.,ds;- Gt.../'j'ds~)

where the s)'llllllltric propertY of Ci/lI was once apin used. This quantity can then be represented by

I... =i CI/IrIMS,'1'8"•. - 8".,8",.)G tm,",' ds~

or in other words

I... =- i Ci/lrlb/£,''','' ."",Gt..J ,,, ds~.

This expression now can be transferred to a line integral through Stoke's theorem. which implies that

i T,.dx~=i B,.",.T".r'ds~.

The resultlllt form after this appIic:ation is


